Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation
نویسندگان
چکیده
BACKGROUND Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. RESULTS A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. CONCLUSIONS The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.
منابع مشابه
Inducible gene expression in Lactobacillus reuteri LTH5531 during type II sourdough fermentation.
Lactobacillus reuteri LTH5531 is a dominant member of the microbiota of type II sourdough fermentations. To investigate the genetic background of the ecological performance of LTH5531, in vivo expression technology was used to identify promoters that show elevated levels of expression during growth of this organism in a type II sourdough fermentation. Thirty-eight sourdough-induced fusions were...
متن کاملIn situ production of exopolysaccharides during Sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria.
EPS formed by lactobacilli in situ during sourdough fermentation may replace hydrocolloids currently used as texturizing, antistaling, or prebiotic additives in bread production. In this study, a screening of >100 strains of cereal-associated and intestinal lactic acid bacteria was performed for the production of exopolysaccharides (EPS) from sucrose. Fifteen strains produced fructan, and four ...
متن کاملComparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations
Lactobacillus reuteri is a dominant member of intestinal microbiota of vertebrates, and occurs in food fermentations. The stable presence of L. reuteri in sourdough provides the opportunity to study the adaptation of vertebrate symbionts to an extra-intestinal habitat. This study evaluated this adaptation by comparative genomics of 16 strains of L. reuteri. A core genome phylogenetic tree group...
متن کاملIdentification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei
Gamma-amino butyric acid (GABA) possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad) gene of a loca...
متن کاملIn Situ Biosynthesis of Natural Fruity Flavors in Whey and Whey Permeate during Fermentation Using Lipase
Background and Objectives: Chemical synthesis and extraction of flavorings from natural sources include disadvantages. However, biotechnology is a preferred method for biosynthesis of flavorings. The objective of this study was to synthesize natural esters with fruity flavors in whey using lipase of Palatase in combination with ethanol fermentation. Materials and Methods: Lactobacillus ferment...
متن کامل